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Abstract

Here we outline a modification of the second order central difference scheme based on staggered spatial grids due
to Nessyahu and Tadmor [H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation
laws, J. Comput. Phys. 87 (1990) 408] to a non-staggered scheme for one-dimensional hyperbolic systems which
can additionally include source terms. With this modification we integrate the one-dimensional electrostatic plasma
fluid-Poisson equations to illustrate ion-acoustic soliton formation and propagation. This application is interesting
because, to our knowledge, it is the first time that a high-resolution scheme has been employed on the plasma fluid
equations, where in particular, we test its ability to handle a coupled fluid-Poisson system and also, we examine its
performance on very long time integrations involving thousands of time steps. As a check on the accuracy of the
modified scheme we perform tests on a shock capturing problem in a Broadwell gas, and in both cases, the results
obtained are compared with those from previously reported schemes.
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1. Introduction

Hyperbolic systems of partial differential equations can be used to model many physical systems,
including fluids and electrical plasmas. The Riemann-solver-free high-resolution staggered second-order
scheme of Nessyahu and Tadmor[1] has been a prototype for several that were devised for the numerical
solution of hyperbolic systems. Most of these were obtained for or applied to homogeneous systems.
Moreover, the use of staggered schemes complicates the application of boundary conditions. Jiang et
al. [2] formulated a procedure to convert staggered schemes to non-staggered ones for systems without
source terms. In this paper we combine the above methods[1,2] to produce a non-staggered second-order
numerical scheme to integrate hyperbolic systems which include source terms. This is an alternative to
the use of splitting methods for source terms[3,4]. We test it by modeling shocks in a Broadwell gas
[3,4]. We then model ion-acoustic soliton formation and evolution in an electrical plasma fluid composed
of ideal-gas electron and ion fluids[5].

The modified technique outlined here is applicable to the numerical integration of a one-dimensional
system in the general form:

∂u(x, t)

∂t
+ ∂f (u)

∂x
= g(u). (1)

Hereu(x, t) is the unknownm-dimensional vector function,f (u) the flux vector,g(u) a continuous source
vector function, withx the single spatial coordinate andt the temporal coordinate.

In Section2 we outline the modifications required in the numerical scheme[1] and Section3 reports
on a test application for a Broadwell gas and then on its application to ion-acoustic solitons in a two-fluid
plasma.

2. The modified numerical scheme

Although this treatment follows closely those of[1,2] and a later elucidation in[6], we shall find
it instructive to follow first principles in order to clarify the incorporation of the source term, but we
nevertheless omit many details. To begin, we employ uniform spatial and temporal grids with the spacings,

x = xj+1 − xj; 
t = tn+1 − tn (j andn being suitable integer indices).

Now we apply the concept of a weak solution[7,8], and integrate(1)over the cell [xj, xj+1] × [tn, tn+1]
as ∫ ∫

∂u

∂t
dt dx +

∫ ∫
∂f

∂x
dt dx =

∫ ∫
g(u) dt dx. (2)

Then, with the definition:

1


x

∫
u(x, tn+1) dx = ūn+1

j+(1/2), (3)

which are cell averages centred atxj+(1/2) with support [xj, xj+1] we follow [1] and obtain from(2)

ūn+1
j+(1/2) = 1


x

∫ xj+1

xj

u(x, tn) dx − 1


x

∫ tn+1

tn

∫ xj+1

xj

∂f

∂x
dx dt + 1


x

∫ tn+1

tn

∫ xj+1

xj

g(u) dx dt (4)
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To proceed, we employ foru(x, tn) in the integral above, piece-wise linear approximations of the form:

Ln
j (x) = ūnj + x − xj


x
unxj, xj−(1/2) ≤ x < xj+(1/2), (5)

which are the high resolution "MUSCL" type interpolants of[2] whereūnj is the cell average centred at
xj, similar to(3), and theunxj/
x denote the discrete slopes, to be explicitly determined later.

Now using(5) for each half interval and following[2], the first integral in(4) is

1


x

∫ xj+1

xj

u (x, tn) dx = 1


x

∫ xj+(1/2)

xj

Ln
j (x) dx + 1


x

∫ xj+1

xj+(1/2)

Ln
j+1(x) dx

= 1

2
ūnj + unxj

8
+ 1

2
ūnj+1 − unxj+1

8
(6)

Substituting(6) into (4) then yields

ūn+1
j+(1/2) = 1

2
[ūnj + ūnj+1] + 1

8
[unxj − unxj+1] − 1


x

∫ tn+1

tn

∫ xj+1

xj

∂f

∂x
dx dt

+ 1


x

∫ tn+1

tn

∫ xj+1

xj

g(u) dx dt. (7)

The flux and source term integrals are now approximated by using the trapezoidal rule in contrast to
the use of the midpoint rule for the flux integral in[1]. We have found this approach to give more stable
computations especially for the numerical integrations of the plasma fluid equations.

Thus

1


x

∫ tn+1

tn
[f (u(xj, t)) − f (u(xj+1, t))] dt � −λ

2
[(fn+1

j+1 + fn
j+1) − (fn+1

j + fn
j )] (8)

and

1


x

∫ tn+1

tn

∫ xj+1

xj

g(u(x, t)) dx dt � 1

4

t[g(unj ) + g(unj+1) + g(un+1

j ) + g(un+1
j+1)], (9)

whereλ = 
t/
x. Substituting(8) and(9) into Eq.(7) then results in

ūn+1
j+(1/2) = 1

2
[ūnj + ūnj+1] + 1

8
[unxj − unxj+1] − λ

2
[(fn+1

j+1 + fn
j+1) − (fn+1

j + fn
j )]

+
t

4
[g(unj ) + g(unj+1) + g(un+1

j ) + g(un+1
j+1)], (10)

where again the spatial derivative terms are as yet unspecified.
Similarly

ūn+1
j−(1/2) = 1

2
[ūnj−1 + ūnj ] + 1

8
[unxj−1 − unxj] − λ

2
[(fn+1

j + fn
j ) − (fn+1

j−1 + fn+1
j−1 )]

+
t

4
[g(unj−1) + g(unj ) + g(un+1

j−1) + g(un+1
j )]. (11)
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We note that(10) is essentially the second-order NT scheme[1] but now includes the source term. Also
theū terms may be considered[6] to be approximations of theu values at the grid points to second order.
Further, since the trapezoidal rule for the flux and source terms integrals are also second-order accurate
in space and in time, the overall scheme is second-order accurate.

To obtain the modified form of(10) or (11) for unstaggered grids we proceed as in[2]. First
we obtain a piecewise-constant reconstruction from the calculated staggered cell-averages at time
tn+1 and then project the interpolant onto the nonstaggered grid to obtain non-staggered cell-
averages.

Thus, using the definition of the unstaggered cell averages:

ūn+1
j = 1


x

[∫ xj

xj−(1/2)

Ln+1
j−(1/2)(x) dx +

∫ xj+1

xj+(1/2)

Ln+1
j+(1/2)(x) dx

]
, (12)

employing piecewise-linear interpolantsLn+1
j±(1/2) through the calculated staggered cell-averages at time

tn+1, results in

ūn+1
j = 1


x

∫ xj

xj−(1/2)

ūn+1
j−(1/2) dx + 1


x

∫ xj+(1/2)

xj

ūn+1
j+(1/2) dx + un+1

xj−(1/2)


x2

∫ xj

xj−(1/2)
(x − xj−(1/2)) dx

+un+1
xj+(1/2)


x2

∫ xj+(1/2)

xj

(x − xj+(1/2)) dx = 1

2
[ūn+1

j−(1/2) + ūn+1
j+(1/2)] − 1

8
[un+1

xj+(1/2) − un+1
xj−(1/2)],

(13)

as in[2].
Substituting Eqs.(10) and (11)into (13)finally gives the second order formula:

ūn+1
j = 1

4
[ūnj+1 + 2ūnj + ūnj−1] − 1

16
[unxj+1 − unxj−1] − 1

8
[un+1

xj+(1/2) − un+1
xj−(1/2)]

+
t

8
[g(unj+1) + 2g(unj ) + g(unj−1)] + 
t

8
[g(un+1

j+1) + 2g(un+1
j ) + g(un+1

j−1)]

−λ

4
[(fn

j+1 − fn
j−1) + (fn+1

j+1 − fn+1
j−1 )]. (14)

As is common in shock calculations we shall employ the min-mod derivatives[1–3]:

un+1
xj−(1/2) = MM(
un+1

j ,
un+1
j−1), un+1

xj+(1/2) = MM(
un+1
j+1,
un+1

j ) (15)

where the min-mod nonlinear limiter MM is defined by

MM(s1, s2, . . .) =




min{sj} if sj > 0∀j
max{sj} if sj < 0∀j
0 otherwise
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and where after some simplification:


un+1
j = ūn+1

j+(1/2) − ūn+1
j−(1/2)

= 1

2
[ūnj+1 − ūnj−1] − 1

8
[unxj+1 − 2unxj + unxj−1] − λ

2
[fn+1

j+1 − 2fn+1
j + fn+1

j−1

+fn
j+1 − 2fn

j + fn
j−1] + 
t

4
[g(un+1

j+1) − g(un+1
j−1) + g(unj+1) − g(unj−1)]. (16)

Here again theux terms are evaluated by the min-mod forms:

uxj = MM(uj+1 − uj, uj − uj−1). (17)

Also useful in some applications is the more accurate UNO derivative[1]

uxj = MM(uj − uj−1 + 1

2
MM(uj − 2uj−1 + uj−2, uj+1 − 2uj + uj−1),

uj+1 − uj − 1

2
MM(uj+1 − 2uj + uj−1, uj+2 − 2uj+1 + uj)). (18)

Now, in order to apply the scheme(14), which is implicit in time, we shall require a predictor such as[2]:

un+1 = un + 
t

[
g(un) − 1


x
fn
x

]
, (19)

where the flux spatial derivative terms1

x

f n
x are at the indicated time leveln and can be evaluated using

the MM function or calculated from the explicit form off (u) and(17) or (18).
With these and(15)–(19)we shall hereafter refer to the non-staggered scheme(14)as the NNT scheme.
Some insight can be gained into the stability of the scheme, albeit of the homogeneous form, by

performing a von Neumann linear stability analysis[10] of the NNT scheme(14) without the source
term. By numerically obtaining the amplification factor as a function of phase angle for variousλa,
wherea is the wave speed obtained by employing Roe’s scheme for the Euler equation[10], we have
established that the linearized homogeneous version of(14)satisfies the von Neumann necessary condition
| λa |≤ 0.5 as in[1]. In practice however, for some cases the bound on the right can be taken close to
unity.

3. Tests and plasma soliton modeling

3.1. Shocks in a Broadwell gas

First as a test for this scheme we solve the governing equations for a Broadwell gas[3,4]:

∂ρ

∂t
+ ∂m

∂x
= 0,

∂m

∂t
+ ∂z

∂x
= 0,

∂z

∂t
+ ∂m

∂x
= 1

ε
(ρ2 + m2 − 2ρz),

whereε is the mean free path andρ(x, t),m(x, t), z(x, t) are the density, momentum and flux respectively.
The rangeε = 1 · · · 10−8 covers the regime from the non-stiff to the highly stiff. In particular, the limit
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ε = 10−8 requires a renormalization of the variables such as in the form:

x̄ = 1

ε
x, t̄ = 1

ε
t

followed by computations on an equivalent finer grid (see for example[9]).
We comment further that in the limitε → 0 we obtain

z = zE(ρ,m) = 1

2ρ
(ρ2 + m2)

which leads to the equilibrium solution of the governing equations above which they reduce to corre-
sponding Euler equations.

The NNT scheme(14) together with the UNO limiter(18) was applied to the above with the two sets
(Rim1 andRim2) of initial conditions corresponding to several Riemann problems, each distinguished
by a specificε-value:

Rim1 : ρ = 2,m = 1, z = 1, x < xJ, ρ = 1,m = 0.13962, z = 1, x > xJ .

Rim2 : ρ = 1,m = 0, z = 1, x < xJ, ρ = 0.2,m = 0, z = 1, x > xJ .

In all calculations absorbing boundary conditions were employed, where in particular, the boundary
values were obtained by quadratic extrapolations of internal point values on a fixed grid, over an
integration domainD on theX-axis as detailed below. Results obtained are depicted inFig. 1, as
follows:

(a) The rarefied regime (Rim1 with ε = 1). The solution shown at timet = 0.5 agrees very well with
the reference or ‘exact’ solution obtained by computing with a finer grid with
x = 0.001 and

t = 0.0005. These results are as good as the staggered grid solutions[3,4].

(b) The intermediate regime (Rim1 with ε = 0.02). The solution again agrees very well with the ‘exact’
solution obtained by computing with the same finer grid as (a) above and with the staggered grid
solutions[3,4].

(c) The near fluid dynamic regime (Rim1 with ε = 10−8). Here, the computed solution shown agrees
reasonably well with the reference and just as well as with the staggered grid solutions[3,4].

(d) The near fluid dynamic regime (Rim2 with ε = 10−8). Again here the computed solution agrees
reasonably well with the reference and staggered grid solutions[3,4], when one takes into account
the fact that the figure gives a “zoomed” view of a subdomain. Also the NNT scheme captures the
correct behaviour given in[4]: we observe here a left-moving rarefaction and a right-moving shock
wave as in[4].

In general, from (a) and (b) above, we see that the NNT scheme maintains reasonably uniform ac-
curacy when moving from the rarefied regime to the fluid dynamic limit for the Broadwell model; the
non-oscillatory properties were confirmed in both theRim1 andRim2 cases with different relaxation
times, in agreement with[3,4]. Moreover, the NNT scheme can be applied to systems with source
terms that are both stiff and non-stiff, capturing the behaviour predicted by the Broadwell equations as
before[3,4].
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Fig. 1. Broadwell gas shock solutions: (a)Rim1 with ε = 1, D = [0,10],
x = 0.01,
t = 0.005, xJ = 5. (b) Rim1 with
ε = 0.02,D = [0,16],
x = 0.01,
t = 0.005, xJ = 8. (c) Rim1 with ε = 10−8, D = [0,20],
x = 0.02,
t = 0.001, xJ =
10. (d) Rim2 with ε = 10−8, D = [0,10],
x = 0.01,
t = 0.005, xJ = 5. Here, the curve labelled 1∼ ρ, 2 ∼ m, 3 ∼ z, the
snap-shot time ist = 0.5 in all cases and the continuous line denotes a reference (“exact”) solution.

3.2. Ion-acoustic solitons in a plasma fluid

3.2.1. The electrostatic plasma fluid equations
As our main application, we use the form(1) as a model for an unmagnetized one-dimensional fluid

plasma. Here we numerically solve, self-consistently, the one-dimensional Euler–Poisson equations for
an unmagnetized plasma consisting of electrons (k = e) and ions (k = i) taken as ideal fluids together
with the ideal gas law[5], namely,

Continuity:

∂nk

∂t
+ ∂(nkvk)

∂x
= 0. (20)

Momentum conservation:

mknk

(
∂vk

∂t
+ vk

∂vk

∂x

)
+ ∂pk

∂x
= −qknk

∂φ

∂x
. (21)
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Ideal gas equation of state for each fluid component:

pkn
−γk
k = constant. (22)

Poisson’s equation for the electric potential:

∂2φ

∂x2
= −4π

∑
k=e,i

qknk. (23)

Thenk, vk, pk, γk,mk andqk are the respective component densities, flow velocities, partial pressures,
adiabatic indices, particle masses and charges andφ is the electric potential. The final equations were
suitably normalized to time and spatial scales appropriate for the observation of ion-acoustic wave struc-
tures: full details are given in[5]. Also there, it is detailed how the above equations may be written in
both conservation and quasilinear forms, where the latter is hyperbolic.

Now for the numerical integration we employ a system lengthLx = 256, with
x = 0.1, an artificial
ion/electron mass ratio of 50, an ion/electron temperature ratio of 1/100 together with
t = 0.01.

To compute with this scheme we have to employ an implicit procedure. We note that the right-hand
side(20)-(21)is not strictly in the form given in(1). However, the fact thatφ is determined as a function
of nk andvk by solving the Poisson equation “frozen in time” and then self-consistently incorporating
it within the overall algorithm, allows us to treat it as a source term of the type in(1). Full algorithmic
details are given in[5], but now with the numerical scheme(14) replacing the older one there.

3.2.2. Soliton computations
In our illustrative application, we demonstrate how solitons can be generated from an initial density

perturbations of the form

nk(x,0) = 1.0 + exp
[
−1

2
(x − xc)

2
]

; 0 ≤ x ≤ Lx (k = e, i)

wherexc is the system centre andLx = 256 is its length (see[5] for more details). The initial velocities of
the ions and electrons were set to zero for allx. Here, we employ the reflective boundary conditions[5] i.e.
the homogeneous Neumann conditions on the densities (∂nk/∂x = 0) with zero flow velocities (vk = 0)
and zero potentials and electric fields there. The NNT solutions were computed with(14) together with
the min-mod limiter(17).

The results given inFig. 2 illustrate the formation of a double soliton from a density “slug”, a device
employed in past simulations and experiments (see[5] and references therein). The subsequent evolution,
propagation and reflection of the solitons from the boundaries are clearly indicated in for example, the
density profiles. Such results have been reported with the use of a more conventional Lax–Wendroff (LW)-
type numerical integration scheme[5] and this example is again employed here for comparison purposes.
The high-frequency oscillations seen in the electron velocity profiles (curves 3) are predominantly due
to the production of electron plasma waves[5] rather than any numerical instabilty. However, at about

Fig. 2. Formation and time evolution of Gaussian density-perturbation induced solitons in a plasma fluid. Here the curve labelled
1 ∼ ne + 0.5,2 ∼ ni,3 ∼ ve + 0.5,4 ∼ vi,5 ∼ φ − 1, where,ne(ni ) is the electron (ion) number density,ve(v1) is the electron
(ion) flow velocity,φ is the electrostatic potential, all in normalized units. Horizontal distances are in normalized units. Only the
starting density profilesni (x) = ne(x) are shown in the initial frames.
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this time the soliton structures are reflected at the boundaries. Thereafter, one can observe a significant
reduction in the random oscillations in the profiles (e.g. curves 3) of the NNT scheme in comparison to
the LW solutions. We suggest that the LW signatures have significant numerical noise over and above any
physical waves. Since this noise mainly occurs after the boundary reflections we ascribe it to the inability
of the LW scheme to incorporate the imperfect numerical treatment of reflections at the boundaries.

As far as the dissipation of the two schemes is concerned, they appear to be on par, with only a small
drop in soliton amplitudes seen in the NNT soliton structures in comparison (see curves 1 and 2 after
about 15,000 time steps). This behaviour is due to inherent dissipation[6] of such a scheme and manifests
when
t ∼ (
x)2 as is the situation here. Nevertheless the NNT scheme is noticeably stable and devoid
of spurious oscillations.

4. Conclusion

A version of the Nessyahu–Tadmor[1] scheme for numerical integration of one-dimensional hyperbolic
systems with source terms on non-staggered grids has been obtained and employed to integrate the plasma
fluid equations. Initial test application of it to model shock structures in a Broadwell gas[3,4] indicate
that results are of comparable accuracy to previous staggered scheme results and in some cases of better
accuracy to those from Runge–Kutta splitting schemes[3,4]. In our main application of the modeling of
the formation of and the long-time evolution of ion-acoustic solitons in a plasma fluid, we find that the
scheme is able to contain spurious oscillations due to boundary reflections. We can thus advocate the use
of such high-resolution schemes as stable modeling engines in nonlinear plasma studies.
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